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Foreword

The impetuous development of aviation, missile technology and
the Naval fleet led to the necessity of fundamental improvement of
the means of navigation and control of moving objects. Besides
high accuracy, a number of such specific requirements as universa-
lity, reliability, short preparation time, electronic counter-
measures, and sometimes concealment of operation are now placed on
automatic navigation systems.

Along with development of other principles, special attention
has been devoted in recent years to inertial navigation systems, in
which the current position of a moving object is determined by
integration of the on-board measured accelerations. Inertial systems
have such important advantages as universality, autonomy and
electronic countermeasures over other means c¢:f navigation., However,
realization of these systems requires highly accurate and reliably
opcrating elements: accelerometers, integrators, gyroscopes, tracking
systems and computer devices. The interest displayed in inertial
navigation systems is explained both by their principal advantages
and also to a great extent by the fact that inertial systems, which
provide the required navigation accuracy, can be developed on the
basis of modern components.

The development of shipboard gyrocompasses by H. Anshutz-
Kdmpfe (1908) and Elmer A. Sperry (1911) can be considered the first
use of inertial methods in navigation. The next important advance
was the investigations of M. Schuller, who established the conditions
of the unperturbahility of the gyrocompass (1910) and of physical
and gyroscopic pendulums (1923) by horizontal accelerations. Further
stages in the development of the idea of inertial navigation are
the principle of power-assisted gyroscope stabilization, proposed by
S. A, Nozdrovskiy (1924), and also the principle of integral gyro-
scope correction, proposed in 1932 by Ye. B. Levental and in 1935
by I. M. Boykov. '
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For some time the development of inertial systems was related
to gyropendulum systems and gyroscopic systems with integral
correction, which simulate M. Schuller's physical pendulum and
which permit plotting of an acceleration-proof vertical on a moving
object. Significant results are related to the names of B. I.
Kudrevich, I. V. Gekkeler, B. V. Bulgakov, Ya. N. Roytenberg and
A. Yu, Ishlinskiy.

Another aspect of the inertial navigation method, namely, the
circumstance that not only the vertical can be plotted, but the

current coordinates of the object and its speed can be determined
by using it, developed somewhat later. The first practical achieve-

ment in this direction was apparently the development of a control ]
system for the FAU-2 rocket. Further development of this direction
can be traced from data of American publications:r The beginning
of development of inertial systems in their modern form in the
United States dates from 1946-1947 and is related to development

of control systems for ballistic (Atlas type) and winged (Navaho

and Snark type) missiles. Practical realization of inertial systems
was possible at that time because of development of flotation gyro-

scopes, proposed in 1946 by Draper (in the Soviet Union flotation
gyroscopes were proposed in 1945 by L, I. Tkachev).

During the past few years considerable attention has been
devoted in the non-Soviet literature, especially in American
literature, to problems of inertial navigation. A large number
of articles devoted to individual theoretical and engineering
problems of inertial navigation have been published in various
journals and several monographs have been issued. The most signi-
ficant of these investigations have been translated into Russian.
In 1958 the Foreign Languages Publishing House published : book
by research associates W. Rigley, R. Woodberry, and J. Govorky of
the Massachusetts Institute of Technology entitled "Inertial
Navigation", In 1964 translations of K. L. MacClure's book
"Inertial Navigation Theory" (Nauka Publishing House) and the
collection "Inertial Control Systems", edited by D. Pittman
(Voyenizdat) were also published.

FTD-1C-23-893-74 3 : .




During the past few years a number of articles, including
several investigations of A. Yu. Ishlinskiy in which the fundamen-
tals of a strict theory of inertial systems2 .have been outlineqd,
have been published in the Soviet periodical literature on the
problems of inertial navigation. In 1961 the Publishing House of
Physicomathematical Literature published G. O. Fridlender's book
"Inertial Navigation Systems" and in 1962 the Sovetskoyeradio
Publishing House published I. A, Gorenshteyn, I. A. Schul'man, and
A. S. Safaryan's book "Inertial Navigation".

It should be noted that the numerous investigations on the
problems of the theory of inertial systems published in the
periodical press are usually of an unrelated nature, and in the
greater part of them there is lacking a clear statement of the
problems and the required strictness of their solution., The mono-
graphs enumerated above are limited to consideration of individual
classes of inertial systems. As a rule, various types of simpli-
fications of the structure of inertial systems and the laws of
motion of an object are introduced from the very beginning. Because
of this, the exposition falls into separate and usually unrelated
parts, the community of the basic principles of inertial navigation
is obscured, and the theorectical results obtained are sometimes un-
suitable for rough approximation. Introduction of a priori sim=- 1
plifications is usually explained by the insurmountable complexity

of precise consideration, l

At the same time the continuous increase in the demands on
accuracy of inertial navigation systems forces consideration of the |

finer and finer circumstances of their operation, such as the

asphericity of the earth's shape, the eccentricity of its gravita-

tional field etc, and leads to the necessity of detailed analvsis of {
the dynamics of their perturbed operation, The desire for univer-

sality leads, on the other hand, to rejection of the simplirications
possible during development of a navigation system for a fully

defined object.




In this book the author sets himself the task of
systematic and strict exposition of the theoretical operational

bases of inertial navigational systems from a common viewpoint
without a priori simplifications and limitations, determined by the
level of present technology. The methods of analyzing the opera-
tion of inertial navigation systems( used by the author’ are the
development of the ideas contained in the investigations of aca-
demician A, Yu. Ishlinskiy. The basis of the book were the author's
articles, published during the past few years in jburnals of the
USSR Academy of Sciences: Prikladnaya Matematika i Mekhanika and
Izvestiya AN SSSR (serii Mekhanika and Tekhnicheskaya Kibernetika).
The examples which concern schematic solutions and numerical
evaluations are constructed on the basis of data from-foreign

publications.

Main attention is devoted in the book to the equations of
ideal operations (unperturbed functioning) of inertial systems,
which determine their structure,. and, to equations of inertial
navigation system errors, an analysis of which permits evaluation of the
operating stability of the system and establishment of the rela-
tionship between the errors of the elements and the accuracy of
determining the navigational parameters of the object: the current
coordinates of position and its orientation in space. Problems
of autonomous preparation of inertial systems for operation are
also considered. The book is devoted to the theory of autonomous
inertial systems. The problems related to drawing up additional
information and correction of inertial systems, are considered in
another book of the author [Inertial Navigation Theory (Corrected
Systems)] which is directly related to the present book and which
was published immediately after it.

The book consists of seven chapters.




In the first chapter the theoretical and mechanical bases
of inertial navigation are outlined, the equations of accelero-
meter operation are derived, the precession theory of gyroscopic
devices for inertial systems is presented, the basic equation of
inertial navigation is found and the general principles of con-
structing an inertial navigational system and the problems of the
theory of these systems are discussed.

In the second chapter the necessary data on the shape, gravi-
tational field and motion of the earth are presented. The main
point in this chapter is the derivation of expressions from the solution
of the Stokes problem for projections of the earth's gravitational
field intensity onto its bodv axes.

The third chapter contains derivation of equations of the
ideal operation of an arbitrary inertial system, first for cal-
culation of Cartesian and then for calculation of curvilinear co-
ordinates. The various special cases and examples for the more
commonly used coordinates: geocentric, geographic and orthodromic,
are also presented and an example of non-orthogonal curvilinear
coordinates is also given. The theory of so-called gravimetric
systems, which do not contain gyroscopes, is also outlined in
this chapter.

The derivation and transformation of the equations of inertial
navigation systems errors are presented in the fourth chapter.
Both equations of coordinate errors and equations of orientation
errors are considered. The problem of reducing the errors of the
inertial system elements to equivalent instrumental errors of the
main sensitive elements - accelerometers and gyroscopes = is given

special consideration,

In the fifth chapter the common properties are considered,
the stability and integration of error equations are investigated
and the relationship of errors in calculating the location of an
object and its orientation to the instrumental errors of the elements
is considered. The case of Kepler motion of an object is given
special consideration,




The sixth chapter is devoted to the theory of inertial navi-
gation on the earth's surface. Both inertial systems with three
arbitrarily oriented accelerometers and those with two horizontally
positioned accelerometers are considered. The latter are compared
to Schuller's pendulum - gyroscopic systems, the strict theory of
which is also presented in this chapter,

Finally, in the last, the seventh chapter, the problems related
to autonomous preparation of an inertial system for beginning of
operation in the case of a fixed starting point with respect to the
earth, are considered.

For purposes of compactness, the exposition is performed
primarily in a vector form, and the elements of tensor calculus
are employed when considering curvilinear coordinates. The final
results are usually written in a scalar form. References to the
literature are given in footnotes and, moreover, a bibliography
is presented at the end of the book.

The author is aware that the book is not devoid of deficien-
cies. Some results could apparently be obtained by simpler means;
improvements in the portion of selecting the sequence of outlining
the individual problems are also probably possible. Critical
comments and desires of the readers will be gratefully accepted.

The author feels it his pleasant duty to express deep grati-
tude to A. Yu. Ishlinskiy for unflagging attention and assistance
in the work on the book. The author also thanks Ye. A. Devyanin,
I. V. Novozhilov and N. A. Parusnikov for participating in the
discussion of individual sections of the book.




The author did not set himself the task of presenting a
complete survey of the history of development of the ideas
of inertial navigation., This task is specific in itself and
can be the subject of a separate investigation. There is
apparently a need for such an investigation. Ths is es-
pecially indicated by publication of H. Helman's article
"Development of Inertial Navigation" in the American journal
Navigation (Vol. 9, No. 2, 1962), Problems of the history
and priority are illuminated unilaterally and inaccurately
in this article. References to a number of other well-known
investigations of Soviet authors are lacking in it. The
main references from these investigations are indicated in
the bibliography at the end of this book., Of course, the
list does not claim to be complete,

See, for example: Ishlinskiy, A, Yu., "On the Theory of the
Gyrohorizon - Compass," Prikladnaya Matematika i Mekhanika

Vol. 20, No. 4, 1956; "Equations of the Problem of Calculating

the Location of a Moving Object by means of Gyroscopes and
" ~Accelerometers," Prikladnaya Matematika i Mekhanika Vol. 21,
No. 6, 1957,




Chapter 1

Theoretical and Mechanical Bases of Inertial Navigation: Sensing
Elements, the Fundamental Equation of Inertial Navigation and the
Principle of Constructing Inertial Navigation Systems

§ 1,1. The Overall Characteristics of the Method of Inertial
Navigation

The main task of any navigation method is to determine the
location of the object, i.e., to determine the coordinates of
some point, for example, of the center of mass, in a given system
of reference. The problem of an inertial navigation system usually
includes calculation of the rates of variation of these coordinates
and also calculation of the parameters which characterize orienta- {
tion of the object in a given system of reference and calculation
of the variation of orientation parameters,

The principal characteristic of the inertial method of navi-
gation includes the fact that the coordinates of the object are
obtained essentially by integration of the equation of motion of
its center of mass in the absolute (inertial) system of coordinates.
The vector of the composite force, applied to the object,which is
required for integration of this equation, is determined by the
indications of special devices - accelerometers (specific force
sensors) - in the form of projections onto the directions of their
axes of sensitivity. The axes of sensitivity of accelerometers
are oriented into the inertial system of coordinates by using
gyroscopes or by the indications of the accelerometers themselves.

The inertial (Galilean) system of coordinates, in which
Newton's laws of dynamics are valid, is the main system of refer-
ence in inertial navigation.




The indicated circumstances are more typical for the method
of inertial navigation and it is associated with them by its name.

§ 1.2. The Operating Principle and the Equations of Operation
of the Accelerometer (Specific Force Sensor)

The idealized scheme of a spatial accelerometer can be repre-
sented (Fig. 1l.1) in the form of a mass point m, suspended in the
housing of a device in a three-stage weightless elastic suspension,

Fig. 1.1

To derive the equations of operation of the accelerometer
let us introduce a right-hand orthogonal system of coordinates
Ozs*n,c, - some inertial (Galilean) system in which, by definition,
Newton's laws are valid. Selection of the position of point O2

and orientation of the axis £,n,5, are not subject to any other
conditions,

Let the accelerometer housing move arbitrarily in this co-
ordinate system. Let us consider the motion of point 0, in which
the sensitive mass of the accelerometer is concentrated. The
sensitive mass of the accelerometer is obviously affected only
by the sum Fx of the Newtonian forces of attraction of the sensitive
mass by the entire aggregate of celestial bodies, including strictly

10
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speaking, the attraction by the masses of the object, in which
the accelerometer is installed, and force f} which is determined
by elastic deformation of the suspension. Thus, if F;z is the
radius vector of point O in the inertial system of coordinates,
then the equation of motion of point O has the form:

dry, (101)

m =t -f-l’t('m)‘f‘/-

The differentiation in equation (l.l1l) is absolute, i.e.,
d’?;z/dt’ is the absolute acceleration of point O in the coordinate

system 02€.n.c,.

To an observer, bound to the housing of the accelerometer,
the only effect on the sensitive mass m of the accelerometer is
that of the elastic forces of the suspension, while the parameters
which characterize this effect are the magnitudes of deformation
of the suspension, whose function is elastic forces. Only the
extent of deformation of the suspension can be measured and these
deformations are the indications of the accelerometer.

By assuming that deformation is small and assuming that force
tis proportional to the vector n of deformation of the suspension,
we have:

Se=hn. (1.2)

The equality (1.,2) assumes the isotropy of the elastic prop-
erties of the suspension., The three~-dimensional suspension depicted
in figure 1.1 satisfied this condition at small deformations.

Having taken for simplicity the ratio m/k equal to unity, we
find from equation (l.1) the following expression for calculating
the value measured by a three~dimensional accelerometer:

(1.3)

__ '
L -,é ==ipt = Firy).
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Here F:pz/m, where F is the attractive force acting per unit
of sensitive mass, i.e., the intensity of gravity at point O,

Thus, the specific force, i.e., the effective force of sus=
pension per unit of sensitive mass, is measured by means of an
accelerometer., It is equal to the difference of acceleration of
the sensitive mass and of the intensity of gravity at the point
of the current location of this mass.

Other names of the described device are often used in the
literature = accelerometer and specific force sensor. The first
name, and to a known degree the traditional one, does not
accurately reflect the physics of operation of the device. The
term specific force was introduced by Draper% The name specific
force sensor or the specific force meter accurately corresponds
to the value measured by the device. We will usually employ the
term newtonometer, introduced by A. Yu. Ishlinskiy. This name
correctly reflects the essence of operation of the device as a
force meter (the name Newton has been given to the unit of force
in the international system of units).

In the diagram shown in Figure 1.1, where the three-dimensional
elastic suspension is realized by three pairs of springs, the in-
dications of the newtonometer will be numerically equal to the values
of projections n, of vector ; to unit vectors ;s of the spring

S
axes

n, =n-e,
(1.4)

The actual designs of newtonometers are usually single=-com-
ponent, An idealized diagram of a one-component linear (axial)
newtonometer is shown in Figure 1.2, The sensitive mass of this
newtonometer has one degree of freedom with respect to the housing
and can move only in a straight line, called the axis of sensi=-
tivity., It ié along this axis that the reactive force of the spring
of the suspension, deformation of which is being measured, acts on
the sensitive mass. It is easy to see that in this case the reading
of the newtonometer will also be numerically equal to the projection

e




-
of vector i to the direction of the axis of sensitivity e.

Fig. 1.2

e

Along with linear newtonometers, so-called pendulum newton-
ometers are used. An idealized diagram of a pendulum newtonometer
is shown in Figure 1.3 and is a plane physical pendulum (its axis
of suspension is perpendicular to the plane of the diagram), connec-
ted to the housing by springs whose direction of axes are normal
to the axis of suspension and the axis of symmetry of the pen-
dulum. It is obvious that with small deformations of the springs,
i.e., at small deviations of the pendulum from the average position,
this diagram of the device is equivalent to a linear newtonometer.

.,

2 e JOOW\H
Piq. 1.3

Schemes of newtonometers, called integrating newtonometers
or integrator-newtonometers are possible in which the readings of
the newtonometers are proportional to the integrals or even to
double integrals of ng in time. These schemes are completely
equivalent to that 'of 8 linear newtonometer: the first (or,
accordingly, the second) time derivative of their readings is

equal to ng and is calculated by equations (1.3) and (1.4).
s




In the considered schemes of newtonometers (Figures 1.1, 1.2
and 1,3), the elastic suspension of the sensitive mass is provided
by using mechanical springs, In real designs of newtonometers
elastic (restcring) forces of a different nature, most often elec-
tromagnetic forces, are usually employed. However, this circux~
stance is unimportant to explain the principle of operation of the
newtonometer and to derive equations (l1l.1) and (l1.3). Therefore,
henceforth only a mechanical elastic (spring-loaded) suspension
will be considered. Let us note, incidentally, that the condition
of smallness of deformation of the elastic suspension of the new=-

tonometer is not the principal one and we can disregard it, Of
course the presence of a linear dependence between deformation
and the elastic force of the suspension is also not compulsory.
This function should be only single-valued., However, henceforth
for purposes of simplicity, the relationship of deformation and
force will be assumed to be linear, which does not negate the
essence of the consideration,

‘As already noted, real designs of newtonometers are one-
component. Three one-component newtonometers whose axes of sen-
sitivity are not coplanar, may be assumed equivalent to a single
three-dimensional newtonometer? Thus, in speaking of vector n,
we will henceforth have in mind equation (1.3). We will assume
that the readings of the newtonometers are the projections n,

. bd 1] k) .
of vector i to unit vectors ey of the axes of sensitivity. o

The readings of the newtonometaers are the main information
which is used in inertial navigation systems. The accuracy of
operation of inertial navigation systems is determined mainly by the

accuracy of the specific force measured by the newtonometer, There-

fore, it is very important to have a distinct concept of the principal

sources of errors of newtonometers. The first of them is related '
to the inaccuracy of measuring the extent of deformation of the

springs, which is the carrier of information about the magnitude

of the elastic force. The second source of errors is determined by

14 : - |




the fact that the actual dependence of the extent of deformation
on the magnitude of the elastic force can be distinguished from
the calculating relation used. The third source of errors may be
the presence of unaccounted for forces, acting on the sensitive
mass of the newtonometer, in addition to the force of elasticity
of the suspension, These forces may be, for example, forces of dry
and viscous friction, which occur in the device when the sensitive
mass moves with respect to the housing., We note that the indica-
ted categories of errors generally occur in any measuring device.
Therefore, we can be concerned with them not only in the case of

a mechanical spring-loaded suspension, which was discussed as an
example, but also in the case of an elastic suspension of any
nature. This in itself means that all the indicated errors can

be both deterministic and random.

The essence of the method of inertial navigation reduces to
integration of equation (1.3). Integration of this vector equation
obviously requires conversion to three scalar equations, which can
be obtained by projecting the vector equation to any three non-
coplanar directions, Equation (l.3) is valid in the inertial system
of coordinates 0 E*n*,*, while vector n, contained in this equatlon,
is known by its pro]ectlons n, to the axes of sensitivity e of
the newtonometers. Thus, the fost natural conversion to scalar equa-
tions is the projection of equation (1.3) either to the axes of
the coordznate system 0 E*n*c* or to the directions of the axes of
sensitivity es of the npwtonometers. It would be simplest if the
directions of e, were £ixed in the coordinate system Ozi*n*c*,
for example, if they coincided with the directions of the axes
of this coordinate system.

If the directions of ;s vary their orientation in the co-
ordinate system 0 E*n*c,, then one must know at each instant of time
the position of the directions of es with respect to axes £,N,l..
One must also know the rates of change of the directions of Es in
the coordinate system 0 C*n*,*, because the right side of equation
(1.3), which contains the second derivative a%r /dtz, is projected
to the movable direction of es.

15




§ 1.3. The Precession Theory of Gyroscopic Devices of Inertial
Systems

1.3.1. The Free Gyroscope

One of the possible methods of fixing the direction of the
axes of sensitivity of newtonometers in the inertial system of
coordinates or to obtain information about the position of these
directions and the rates of their change is to use gyroscopic de-
vices, The gyroscope, like the newtonometer, is the main sensing
element of the inertial navigation system.

Let us consider the operating principle and the equations of
operation of the main gyroscopic devices which can be used in
inertial systems.

When deriving the eguations of operation of gyroscopic devices,
we will not go beyond the hounds of precession theory. This theory
makes it possible to obtain the relations of interest to us simply
and clearly., At the same time restriction to laws of the precession
theory of gyroscopes only, as was indicated in A. Yu. Ishlinskiy's
investigation, does not lead to any appreciable errors or in-
accuracies in the consideration of those aspects of the phenomena
with which we must be concerned. The operating principles are
usually selected and the circuits of gyroscopic devices are con=- J
structed usually on the basis of this theory. We resort to the
complete equations of motion of the gyroscope in most cases only
to provide stability of operation of the circuit (the stability
of the operating conditions determined by precession equations)
ard the smallness of deviations of real from precession motion.

I. those cascs when the motion of the gyroscope within the en-
vi-ons of precession motion is of a pre=oscillation nature, the
conplete equations are required to investigate the stability of

the natural oscillations and to find their amplitudes, respectively.

16

—"




Henceforth, when outlining the theory of gyroscopic devices
of inertial navigation, we shall employ the methods of precession
theory in the form developed by A. Yu, Ishlinskiy? In this
case we shall assume that the considered precession conditions are
stable and we will not be concerned with the nature of the tran-
sient processes which provide this stability. Let us also note
that precession theory in the problems which will be subsequently
investigated yields high accuracy. This is a result of the cir-
cumstance that small and slow time-variable rates of precession
are being considered.

Let us consider an ideal free gyroscope (Figure 1l.4) that
is a heavy disc rotating at constant angular velocity and installed
without friction in a weightless gimbel suspension with three degrees of
freedom.6 The center of mass of the disc is located at the point
of intersection of the suspension axes, which are assumed to be
mutually perpendicular., The rotational axis of the disc coincides
with its axis of symmetry.

The equation of motion (rotation) of a heavy solid with respect
to a fixed point has the following form in the inertial coordinate
system (the theorem of angular momentum) :

(1.5)

LY
"Tu' ‘M, (1.5)
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where K is the vector of angular momentum and M is the vector of
the total moment of external forces with respect to the point of

the suspension,

It is assumed in precession theory that the angular momentum
of a gyroscope is determined only by its natural rotation and is
always directed along the axis of its figure. Therefore, by de-
noting the moment of inertia of the gyroscope with respect to the
rotational axis by C, the angular velocity of natural rotation
by ; and the unit vector of the gyroscope axis (the axis of natural
rotation) by €, we will have:

4 (Coe) = M. (1.6) (1,6)

Assuming that the kinetic moment Cw of the gyroscope is con=-
stant and denoting it by H, we find the equation

G2, : (1.7)

->
which relates the rate of change of direction of vector ¢ to the
external force moment. :

If M equals zero, it follows from expression (1.7) that

(1.8)

de
-‘-IT =0, ¢ == 0.

Thus, a free gyroscopé maintains a constant direction of its
rotational axis (the axis of the kinetic moment) in the inertial

coordinate system.
If three free gyroscopes arc taken and the directions of

the axes of sensitivity of the newtonometers are related to the
directions of their kinetic moments, for example by aligning them
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identically (65=Es), and if the directions of Es are combined with

the directions of the coordinate axes £,,n, and g,, then the necw-
tonometer readings of ng will be projections of equations (1l.3) to
the axes of the inertialssystem of coordinates. It is.easy to see
that two frece gyroscopes, with whose axes t » of £, and n,, for
example, can be combined are sufficient. The equalities 38=35, of
course, do not have to be fulfilled. It is sufficient to have

only two free gyroscopes with non-collinearly arranged kinetic moments
and to be given the position of the directions of the axis of sen- 1
sitivity of 85 with respect to the directions of their kinetic
moments. The position of the directions of 38 is completely de-
termined by this in inertial space.

In real designs the moment M is distinct from zero because

of friction in the suspension axes, residual unbalance of the

rotor ,etc. Therefore,

@ (1.9)

dt

K]S

where M, is the perturbing moment. Consequently, the axis of the

gyroscope rotor will be slowly precessed (the so=-called free de-
flection of the gyroscope) by varying its orientation in space
with time.

We note that, along with the effect of the above perturbing
moments, a number of cffects determined by the characteristics
of the dynamics of motion of a frece gyroscope in a gimbal suspension
and related primarily to the ecffect of equatorial moments of inertia
of the gyroscope rotor and the moments of inertia of the suspension
rings, is also added to the frece deflection?




1.3.2. A one=-component absolute angular rate meter,

Let us consider a gyroscope (Figure 1.5), mounted on a platform in
a suspension with two degrees of freedom. The center of mass of
the gyroscope coincides with the center of the suspension., The
gyroscope housing is connected to the platform by a spring, which
creates an elastic moment around the axis of the housing as it
rotates with respect to the platform,

ik ase

Fig. 1.5
For comparison of the equations of motion of the gyroscope,

let us introduce a right-hand orthogonal system of coordinates
Oxyz, bound to the platform, Let us locate its origin in the
center of the gyroscope suspension, let us align the y axis along H
the axis of its housing and the z axis normal to the plane of the

platform, Let point O be fixed in the inertial coordinate system

and let the platform rotate arbitrarily with respect to this point,

so that projecfions of its absolute angular velocity & to the '
X, y and z axes are “x'”y' and Wy

osinstsbiihane i

Let us connect the trihedron Ox‘y‘z‘ obtained from the tri-
hedron Oxyz by rotation of it by angle § around the y axis, to the
gyroscope housing. Rotation is counter clockwise if we look from
the end of the y axis (fig. 1.6), so that the vector of relative angular




velocity { is directed along this axis.

@)

Piq. 1.6
Let us apply the theorem of the kinetic moment to the gyro-
scope housing with rotor. Let us project the vector equation (1.5),
given in the inertial system of coordinates, to the mobile x, y

and z axes.,

Let ‘ :
- 4+ K W2
sl A i (1.10)

->
where K % K and Kz are projections of vector R to the x, y and z

axes, and x, y and z are the unit vectors of these axes. Then,

; " ’ - . 1.11
KR+ Ry + Kok, 5% 40, 4k, L ( )

(time differentiation is denoted by the dots). Since d;/dt, d;/dt

and d;/dt are the velocities of the ends of the unit vectors of the

mobile coordinate system, we have

1.12)
-‘;‘;—::uxx. -%—nuxy. %;—nmt‘(l. (
Consequently,
W —kxd K,yl K.z -0 X (K% + Kyy+-K.2) (1.13)
. -» « P, >
The vector Kx X + Kyy+Kzz is the derivative of vector K, if we

assume that the coordinate system xyz is fixed with respect to the
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inertial system. This derivative is usually called the local
derivative of the vector.

Thus aK __ g
w=hhexk (1.14)
(K is the local derivative) and from expressions (1.14) and (1.5),
we find:
‘ (1.15)

K, + 0K, — oK, =M,

I?,+:-»,K,—¢-»,K,:—. M,,

K-t o,Ky—w, K = M,

Limiting ourselves to within the scope of precession theory,
let us take into account during calculation of K only the kinetic

-
moment M of the gyroscope rotor.

It follows from Figures 1.5 and 1.6 that
Ky=Hsind, K, =0, K,=~Hcosd (1.16)
It is obvious that in the considered case the moments Mx’
My and M, are made up of the eélastic moment of the spring and of
the moments of the normul reacticns of the suspension pins of the
axis of the housing. By noting that normal reactions do not create
a moment with respect to the y axis of the suspension and by assum-
ing that the elastic moment is proportunal to the deformation of
the spring, i.e., to angle 3, we find from relations (1.15) and
(1.16) :
H (o, 818 — o, cosd) = -~ kD,
(1.17)

where k is the proportionality constant

Thus,
(1.18)

o, $tnd —, cosd = =y,
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then from equality (1,17), we find:
(1.19)

=

By assuming that angle 6§ is small and by assuming cos é=1 and
sin 6=6, according to equality (1.18) we can write:

N (1.20)

= Ay —

N

If now

liw (1.21)
_*_L<|.

then
b--.-.-';'...»,_ (1,22)

Thus, the value 6§ of elastic deformation of the spring is propor-
tional to the projection of Wy s of the absolute angular velocity
of the platform to the axis X and if 6 is small and if condition
(1.21) is observed, then the value of 6§ is proportional to the
projection of Wy of the absolute angular velocity of the platform
to its x axis. The value of the elastic deformation of the spring
can obviously be measured. The considered device may be called

a one-component absolute anqular rate meter.

1.3.3. A two=component single=-gyroscopic absolute angular
rate meter, We can show that two components of absolute angular

velocity of the platform can be measured with certain assumptions

using a single gyroscope, i.e., the rate of variation of some
direction in the inertial system of coordinates can be measured.
This possibility is indicated by the circumstance that a free
gyroscope maintains a direction of the vector of the kinetic moment,

fixed in absolute space,

23 |




Let us consider a diagram (Figure 1.7) which differs from
that presented in Figure 1.5 by the fact that the gyroscope is
mounted on a platform in a suspension with three degrees of freedom,
The gyroscope housing is connected to the frame of the gimbal sus-
pension by a spring whose deformation leads to generation of a
moment which acts on the housing and which is directed along its
axis (as in a one;component meter). The frame of the device (the
platform) is connected to the housing in the same fashion. Con-
sequently, the gyroscope housing is mounted in a flexible suspension
with two degrees of freedom. The total elastic moment of the sus-
pension is the only external moment which acts on the gyroscope.
The vector of the elastic moment, divided by the value of the
kinetic moment of the gyroscope H, determines the rate of variation
of the direction of the gyroscope axis in the inertial system of
coordinates according to equation (1,7). Therefore, the projections
of the absolute angular velocity to the axes of the housing and
frame can be determined by measuring the values of the deformation

of the springs.

Fig. l;i

Let us analyze in more detail the operation of the device.
Let us connect to its housing a right-hand orthogonal system of
coordinates Ox'y'z' (Figure 1.8), whose origin we locate in the
center of mass of the gyroscope, we direct the y' axis along the
axis of the frame, and we locate the x' axis in the plane in which
the frame is located, when the spring wf its suspension is not
deformed. Let us connect to the frame the coordinate system Oxyz'
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obtained as a result of rotating system Ox'y'z' by an angle & around
the y' axis. Let us also introduce the coordinate system Ox)y)z,,
rigidly bound to the gyroscope housing. The trihedron Ox,Y,z, is
obtained from the trihedron Oxyz by rotating the latter by an angle‘62
{Figure 1.8) around the x axis, which is coincident with the axis

of suspension of the housing.

Fig. 1.8

Let us now make use of the theorem of the kinetic moment
[equation (1.5)), having applied it to the two mechanical systems:
to the housing of the gyronscope and to the frame with housing. If
the values contained in equation (l1.5) are denoted for the first
system by K!' and If' and those for the second system are denoted by
K? and 12, we find:

an (1
= G (1.23)

Equations (1.23) are equivalent to two systems of scalar equations
of the type of (l1.15). The six equations obviously permit calcu-
lation of the unknown values of 6‘,52 and four moments of the normal
reactions of the axial supports of the suspension of the housing
and of the inner gimbal.

Since we are primarily interested in the relationship of the
values of 6’ and 6? to the elastic moments of the suspension, we

25




can project the equations (1.23) to those axes with respect to
which the normal reactions do not yield moments. For the gyroscope
housing, this axis is the x axis of the housing suspension and for
the housing-frame system, it is the Y(y') axis of the frame sus-
pension., Then, according to equations (1.15), we will have:

Rit oK} — i) = AL, (1.24)
ﬂ+wﬂ-¢ﬁ=ml

Since only the natural kinetic moment of the gyroscope is
taken into account, .we have

K= Klem0, Kb Koz —Hsind:, K)o K} e= Heosdy. (1.25)

By noting that moments M’x, M’y are created only by the springs
of the suspension, and by assuming that they are proportional to the
deformations of the latter,

(1.26)

ML — A, A= - O

we find from equations (1.24) and relations (1.25) the dependence
of §; and §, on Oy wy and w, of ;nterest to us:
(1.27)
H (0, c058; - 0, sind;) = - k8,
" (-L -57 slnh,-—m,msh,) = — kY, i

The first equation of (1.27) is similar to equation (1.17),
ind since

Wy €08 d, -, sind; = wy, (1.28)

t can be written in the form of equation (1.19):
(1.29)
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Since

—— (1.30)

then it follows from the second equation of (1.27) that
(1.31)

Hcos 8y
== ——‘-—— Wy,

4

\

If we assume cos 62= cos 6;=1, sin 61=6‘ and sin 62=62, we have

(1.32)

4

b= = —rr ,]
i
(LR N |

If we required that the following equality be fulfilled
(1.33)

.
-2-"4»,]( 1, -:—,-Im,l« 1,

we find

(1.34)
8== — !; o, O 5!;""‘

Thus, we can find the projections of Wy ! and wy‘ of the
absolute anqular velocity of the gyroscope housing to its axes
according to equalities (1.29) and (1.31) from the results of
measuring the deformations 6‘ and 62 of the clastic suspension,
these projections coinciding with those of Wy and wy of the abso-
lute angular velocity w to the axis of the housing suspension and
to the axis of the frame at small values of 6‘ and 6z and if the

requirements of (1.33) are fulfilled.
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The considered device can be called a two-component single-
gyroscope absolute angular rate meter.

1.3.4. A three-dimensional absolute angular rate meter,
Three one=-component meters, structurally connected into a single

block so that their axes of sensitivity form an orthogonal trihedron,
are employed more often than other schemes for measuring the absolute
angular velocity of a rotating trihedron. This unit is a platform
(Figure 1.93, on which three gyroscopes Gx' Gz' 63 are installed in
suspensions with two-degrees of freedom. A right-hand orthogonal
coordinate system Oxyz, whose Oz axis is normal to the plane of the
platform, is connected to the platform. The axes of the housings

are parallel to the plane of the platform, where the x, and X, axes
of the housings of gyroscopes Gl and 63 are parallel to the x axis

of the platform, while the - axis of the housing of gyroscope G2

is parallel to the y axis of the platform, The gyroscope housings
are connected to the platform by springs (they are not shown in
Figure 1.9), which create moments around the axes of the housings
similar to that which occurred in a one-component absolute angular-
rate meter (figure 1.,5). 1In the position when the springs are not
deformed, vectors Hl and H2 of the kinetic moments of gyroscopes

Gl and G2 are normal to the plane of the platform, and vector H3

of the kinetic moment of gyroscope G3 is parallel to the y axis.
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The orientation of the gyroscope housings with respect to
the direction of the x, y and z axes is determined by the position
of the systems olxlylzl, °x2Y222' and 03x3y3z3 . The origin
of each of these systems is shifted with the center of the sus-
pension of the corresponding gyroscope, the zl,zz,and y, axes coincide
with vectors ul,Hz,and H’ of the kinetic moments, while the xl,x’,
and y, axes are directed along the axes of the housings of the corres-
ponding gyroscopes. As was already noted, when the springs of the
suspensions are not deformed, the zl, z2 and z’ axes are normal to
the plane of the platform (the xy plane). In the general case,
these axes are deflected from the normal toward the platform by
angles 61' 62 and 6’, respectively, so that the table of the direc-
tion cosines between axes xl, yl, z i X y2 and z2 and x’, y’ and

1
z, and between axes x, y and z has the form:

(1.35)
XN 5 1 N XN &
x V0 0 cosd, 0 b, 1 0O 0
y 0 cosh —sinh 0 | 0 0 cosd, —sind,

2 0 sind,  cosd —snd; 0 cusd; 0 sind,  nsd,

Let point O (the center of the platform) be fixed in the in-
ertial coordinate system. Then the motion of the platforrn. consists
only of rotation around point 0, so that the projections of the

absolute angular velocity 4 of the platform to the x, y and z will
be mx} wy and w, .

Let us composec the equations of motiuns of gyroscopes Gx' G
and 03 in projections to the x, y and z axes, having applied the
theorem of the kinetic moment to cach of the three gyroscope housings.,

Projections of the kinetic moments k!, K?, K? to the x, y and

2z axes are found by using the tables of the direction cosines (1.35),
if we take into account that the vectors ﬁl, ﬁz and ﬁ’of the kinetic
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moments are directed along the z‘, z2 and z3 axes, respectively,
These projections are equal to:

(1.36)
' K=o, Kles - Mysind, Kie= M cosd,,
K3 w2 Mysindy, Ky=0, K = 11, c0s 8y,
' K} eao, K)e=Hycosdy,  Kpe==lisind,,

By projecting the equations of the angular momentum for gyro=-
scopes Gl and G’ to the x axis and that for gyroscope G2 to the

y axis, we find according to equations (1.,15):
(1.37)

H, (&, cosd, 4 oy sindy) = A,
(o, sin, i, €08 8)) = M:.

II,(m, sind, - W, c088)) =2 .“:. |

We note that the moments of the normal reactions of the supports
are not contained in the moments M;, M; and M;. Moreover, since
the gyroscope housings are assumed to be balanced with respect to
the axes of their own suspensions, the moments of gravitational
forces may be assumed equal to zero. However, one should bear in
mind that in the previously considered cases the origin of the ro-
tating coordinate system Oxyz coincided with the center of the
gyroscope suspension (and with its center of mass). In the case
now being considered, the centers O‘, Oz, O3 of the gyroscope sus= '
pensions do not incide with the center of rotation of the plat-
form 0, Therefore, additional forces of transient motion inertia
and Coriolis forces, which, generally speaking, may crecate moments
around the axes of the housings, act on the gyroscopec masses.
However, because of the small distances of points O‘, O2 and O3
from the center of rotation of O and because of the limitation of

values Wyt wy and Woe these moments are negligible., Also taking
into account that perturbing moments may be created by only that
portion of the forces of inertia, which determines the inhomogencity

of the inertial force field within the gyroscope housing rather than
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by all the forces of inertia because of the balance of the gyro-~
scopes, we disregard the indicated moments as is accepted.

Thus, the only moments applied to the gyroscopes along the
axes of the housings arc thosc of the flexible couplings of the
suspensions. By assuming that they are proportional to the defor-
mation of the suspensions, we have:

Mi=e—rd, My=—ad M= -

By substituting these expressions into equalities (1.37) we
find
(1.38)

o, €os Ay -f-w, 3indy =2 — .;7'_ 8.
1

@, 8108, — o, cosd,; == —~ .;l'_ 8.
3

o, $ind; — o, (088, = _.7'."..0.‘
13

In the relations (1.38), as follows from the table of direc~

tion cosines (1.35),

(1.39)
wy €038, -, 3indy = w,
6,308, - w,c088; =2 —w,,
W, $10d; — 1, 038, = = Uy,
so that

"y, = ';,:'01- oy, .;/-"-0;, o, "7',:'04‘ (1.40)

Y

The system of equations (1,38) should be solved to find the
values of w_,, w2 and w_, from the known values of 6 , § and 6§ .,
X y z 1 2 3
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The determinant of the system of algebraic equations (1,38)
with respect to w_, w

y and w_ is

z
0 cosd, sind,
A=|—cosd, 0 sind,
0

(1.41)
=2 ~cosdcos(h —0).

sind, cus b,
”

This determinant is equal to zero when the following equalities
occur separately or simultaneously

— g — (1.42)

When fulfilling the first equality of (1.42), the vector ﬁl
of the kinetic moment becomes parallel to the y axis, and when the

second equality is fulfilled, the vectors of the kinetic moments
H and ﬁz become parallel.

In our case angles 61, 62 and 63 are small, the determinant
(1.41) is different from zero and the system of equations (1.38) has
a single-valued solution: A

Ay stnd,
V= Tiy bt Bicos{d =B, X

(1.43)
. *
b (,‘}, 8,cosd — 7]';-6‘ sin n\)
| & )
0, == — — (h.'-m("li‘{b‘“" & 4 . 8§, cos u\.).
W, = - !

b - 'I.'. Y
Tos (8 — 55('/[’ d,cos ), W, 3, sin ‘,)

We note that formulas (l1l.43) are accurate.

Their derivation

did not require restrictions of the type of (1.21) and (1.33), which
were introduced in one- and two-component (simple gyroscope)
absolute angular rate meters.

If the values of angles 61, 62 and 63 are small, then, by

retaining terms of the second order of the smallness, we find, from
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formulas (1.43)

(1.44)
o= 7 bt 0,
SRS 7‘1:' 4 — 7‘]:‘ LT
U p=st= 7‘I!, %+ 7‘]:‘ a9,
Thus, the relations
(1.45)

]
(n),xn-”';-ﬁ.., w, =3 - 7!]"-1\“ W, = — ;]:61

determine the projections of the absolute angular velocity of the

platform to its axes with an accuracy up to terms linear with re- ¥

t i
spect to 61, 62 and 6,

We note that the arrangement of the gyroscopes presented in
Figure 1.9 is not the only one. Other arrangements are possible
which satisfy the condition that the vectors

: 1.46
H X s, MyXs, Hixs (1.46)

form an orthogonal set of three (here g:' §2 and §3 are the unit
vectors of the directions of the axes of the gyroscope housings).

In the gyroscopic indicators of absolute angular velocity con-
sidered above, the elastic moments around the ax»es of the gyroscope
suspension were created by using the springs. In real designs
these moments can also be created by forces of different origin,
for example, by clectromagnetic forces. The nature of the re-
storing moments has no essential significance for derivation of
the relations which determine the operation of gyroscopic velocity
meters., As in the newtonometer circuit, the elastic moment in gyro-
scopic absolute angular rate meters does not have to be proportional
the the angle of rotation (deformation of the spring). If the de-

33




pendence is linear, the corresponding relations become especially
simple and principally important only in order that the dependence s
of the elastic forces onto the corresponding angles be known and
single-valued. As a measuring device the gyroscopic absolute

angular rate sensor is similar in many wa§s to the newtonometer.

The sources of errors of newtonometers and of absoclute angular

rate meters, in particular, are similar in many ways. The main

errors of the latter are related to inaccurate sampling of the

value of spring deformation, to an imprecise knowledge of the

actually existing dependence of the value of the elastic moments l
onto the corresponding deformations (or the instability of this de-

pendence from measurement to measurement) and to moments not taken
into account,

These moments are caused by two main factors: non=coincidence
of the center of mass of the gyroscope to the center of its sus=- |
pension and to the moments of dry and viscous friction in the supports
of the axes of the gyroscope housings. Besides the indicated factors,
certain affects related to the dynamics of motion of the gyroscopic
measuring device in the gimbal suspension with regard to the mo-
ments of inertia of the wheels of the latter,9 also leads to
errors of the measuring device.

All these errors can be represented in the form of certain J

perturbing moments M:x' M: and M:x, which act along the axes of

Y
the housings of gyroscopes Gx' G2 and G,' The instrument errors

Amx, Aw_, and sz of the absolute angqular rate meter will then be

y
equal to:

Ao ee A0, P Ao = M (1.47)
x w7l y = ‘A:T'

It is also necessary to bear in mind another circumstance. When
deriving all the relations for angular rate meters it was assumed
that the natural kinetic moment of the gyroscope is constant. More-
over, in real gyroscopes the constancy of the rate of
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turning of the rotor with respect to the housing can of course be
maintained only with some finite accuracy. The difference of the
value of the kinetic moment of the gyroscope from the constant
value also leads to errors in absolute angular rate meters, The
nature of these errors is casily established by resorting to the
initial equation of angular momentum (l1.5). Since only the natural
kinetic moment of the gyroscope was taken into account when deriving
the equations of motion of angular rate meters, then by introducing
the unit vector £ of the direction of the kinetic moment vector,

we find:

ey =M. 1= 13- M), (1.48)

where AH(t) 1is variation of the value of the kinetic moment., Then,

(1.49)
)\
A G=m—e L an,

It follows from expression (1,.49) that variation of the kinetic
moment H by value AH(t) lecads to the fact that only H+AH instead
of H should be substituted in all the derived equations, because
the perturbing moment -gd% AH is immaterial in view of the fact
that it is directed along the gyroscope axis.

For a free gyroscope some (small) variation of the value of H

of course has no significance whatever.

1l.3.5. Frec and controlled gyrostabilized platforms. In con-

clusion let us consider yet another type of gyroscopic device, used
to maintain fixed orientation in an absolute space bound to the
gyroscopes of a trihedron or to change this orientation by a given
law, We have in mind devices which are called gyrostabilized plat-
forms., These devices arc employed extensively in view of a number
of their inherent advantages, Without familiarization with them,
exposition of the operating principles of gyroscopic orientation
displays would be essentially incomplete.
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A three=dinensional gyrostabilized platform (Figure 1,10) is
a platform mounted in a suspension with three degrees of freedom,
Three gyroscopes Gx' Gz and G’ are secured on the platform in sus-
pensions with two degrees of freedom in the same manner as in the
previously considered three=component absolute angular rate meter
(Figure 1.9). Unlike the latter, there is no flexible coupling
of the gyroscope housings to the platform. Sensors DU:' DUz and
DU, of angles 6‘, 6z and 6, of rotation of the axes of the housings
with respect to the platform arc installed along the axes of the
housings, These attitude sensors control operation of engines En‘,
Enz and En’, which create moments with respect to the axes of the
gimbal suspension. In the case of a controlled platform, moment
sensors DM‘, Dﬁz and DMa' by means of which given (control or correc-
ting) moments are transmitted to the gyroscopes of the platform, are
installed along the axes of the housings, The attitude and moment
sensors are denoted only by gyroscope G2 in Figure 1,10,
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Let us introduce the right-hand orthogonal coordinate systems

Oxy,2., Ox'y'2', Ox"y"2” .n1 Oxyz,

bound to the base on which the gimbal suspension of the platform
is installed, to the outer ring of the gimbal suspension, to the
inner ring of the gimbal suspension (to the outer ring of the ring
mounting, Figure (1.,10) and to the platform, respectively.

The Xq axis is directed along the axis of the outcr gimbal
ring. The y, and z, axes form a right-hand orthogonal se* of three
with the x, axis.

Y
(Y A st / "

Fig. 1.11 Fig. 1.12

The coordinate system Ox'y'z' (Figure 1,11) is obtained by
rotating the coordinate system Ox,y,z, around the x, axis by
angle a. Counterclockwise rotation is assumed to be the forward
direction of rotation if we look from the end of the x, (x') axis.
Thus, the relative angular velocity vector a coincides with the direc-
tion of the x, (x') axis. The position of the y' axis determines
the direction of the axis of the inner suspension ring. 1If a=o,
the coordinate system Ox'y'z' accordingly coincides with the coordinate
system Ox,y,2,, bound to the base,

Trihedron Ox"y"z" (Figure 1.12) is obtained from trihedron
Ox'y'z' by rotating it by angle B around_ the axis Oy' (the axis of
the inner suspension ring). The vector R of the relative angular
rate of rotation is directed along axis y'(y"). Axis z" of tri=-
hedron 0x"y"2" coincides with the normal to the plane of the plat-
form,
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To convert to the coordinate system Oxyz (Figure 1,13), the
trihedron Ox"y"z" should be rotated by angle y around the z" axis,
which obviously corresponds to rotation of the platform by angle ¥y
with respect to the outer band of the ring mounting., Rotation
counterclockwise is assumed to be positive if looking from the end
of the z" axis. Vector § of the relative angular rate of rotation
is directed along the 2" (z) axis.

127

Fig. 1.13

The relative positions of the coordinate systems Ox,y,zZ,,
ox'y'z'!, Ox"y"z" and Oxyz is determined by the following tables

of direction cosines

(1.50)
2 y 2 Xy & x y 2
x 1 0 0 £ cosp 0 sinp x’cosy —siny 0
Yo 0 cosa—sinu y 0 | 0 y siny cosy 0 \
2, 0 sina  cosa 2 —sinpOcosp 2° 0 o

The vectors of the moments of the engines Enl,i.’En2 and En’
are directed along the axes x,(x'), y'(y") and z"(z) which are the
axes of the platform suspension, The engine housings are installed
on the base (object) (Enl), on the outer cardan ring (Enz) and on
the platform (En’), respectively,
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This position of the gyroscopes on the platform (relative
to the bound system of coordinates oxyz) is the same as in the case
of a three-component absolute angular rate meter (Figure 1.9).
Thercfore, to determine the position of the gyroscope housings re-
lative to the x, y and z axes, the trihedrons oxxxyxzx' 2xzyzz2
and O’xsyaza, bound to them, whose orientation in the coordinate
system Oxyz is given by the table of direction cosines (1.35), may

be retained.

Let the center of the platform suspension - point O - be fixed
in the inertial coordinate system and let the projections to the
X, vy and z axes of the absolute angular rate % of the platform in
its motion with respect to point O be Wyer wy and Wye
To construct the equations of motion of a gyrostabilized plat-
form, six mechanical systems should be considered: 1) the device as
a whole, 2) the inner gimbals that which is
distributed on it, 3) the platform together with the gyroscopes
mounted on it, 4) the housing of gyroscope Gx' 5) the housinag of
gyroscope Gz, and 6) the housing of gyroscope G’. The motion of
these systems completely determines the motion of all parts of the
device both relative to the inertial system of coordinates and

relative to each other.

The theorem of the kinetic moment [equation (1.5)) is used to
compile the equations of motion, Ilaving applied it to each of the

systems being considered, we find:
(1.51)

#gnnv U=t 2 3, 4 5 6

The system of equations (1.51) is equivalent to 18 scalar equations,
of which in the general case 18 unknowns can be determined: six
angles a,d,y,él,dz and 63 and 12 moments of the normal reactions
of the supports of six axes ( three gimbal axes of the platform
and three axes of suspension of the gyroscope housings on the platform).
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However, on the basis of equations (l1.51), we can find those six

relations into which the moments of normal reactions do

not enter. To do this, we should obviously project the i-th equation
of (1.51) to the direction u . so that the projection of the vector ﬁ of

the moment of normal reactions in this direction is equal to zero.

According to relations (1.15) and (1.51), this type of equa-
tion will have the form:

‘%’- o apeh-< m,x;)cos W)+ (1.52)
(""' 4okl — u.xi)ms' W)+
+( + 0, Ky — ,K} )cus(: W)=
= M cos(x, ||‘) + M, cos(y n)+ M} cos(:. w'). .
Since,
Mcos(f 1)+ M cos(y, 1) 4 Aljcos (W)= My, (1.53)

then we can select the directions of the suspension axes for the
directions of nt.

As before, on tha basis of precession theory, when calculating
Rl, we take into account only the natural kinetic gyroscopic moments.
By noting that all three gyroscopes are contained in the first three

systems into which we divided the considered device, we conclude
that

K'=K'=K =K',

As already noted, this position of the gyroscopes of the
investigated device with respect to the x, y and z axes is similar
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to the disposition which occurred in the previously considered three-
component absolute angular*rate meter, Therefore, when looking for the
projection of the vector K' to the X, y and z axes, we can use ex-
pressions (1.36) to project the kinetic moment of each gyroscope

to these axes. By totalling the corresponding projections and by

assuming for simplicity

Hy = ty== My 11,

we find

I'{:==Ilsln6,. K} == 11(—sind, 4-cos 8 3). (1.54)

K} = M (cosd, -} cos 8, — sindy).

Let us take the direction of axis 0x,(0x') of thg outer
gimbals of the device as the direction of il for the first
system. The cosines of the angles of this axis with the x, y and =z
axes, according to the tables (1.50), are equal to:

(1.55)

o~ i~
cos(x’, x)=zcosfcosy, cos(x’, y)e==— cospsiny,

o~
cos(x’, z)=sinf.

By substituting expressions (1.53), (1.54) and (1.55) into
equality (1.52), we find the equation of motion of the first system:

(1.56)
H { [':T sind, + o, (cosd; + cosd, 4 sind;) —
—w, (— sind, 4 cosb,)] cosp cosy— [-‘7", (—sind, 4-cosd))
4- o, 8ind; — o, (cos 8, - cos &, -|- sin b,)] cosfisiny 4
-4 [% (cosd, +cosd, - sind,) -+ ©, (— sind, + cos 8;) —
-—m,slnb,] sin [\} = M}-.
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Let us take the direction of the y' axis of the inner ring
o
as the direction of i for the second system. Taking into account |

that
(1.57)

~ o~ '
cos(y', x)=siny, cos(y’, y)r=cosy, ms(y/',\:)=o,

we !find the equation of motion of the second system:
(1.58)
" { [T'l'i stnd, -t o, (cosd, cosd, - sindy) —
—w,(—sind, -}-cosb,)]siu Y -,}-[-‘-"17( -sind; 4-c0sd) 4-
'+‘m, sind, — w, (cosd 4 cosd,-}-sin t\,)]ms y:- =AM

For the third system ( the platform ), the direction of ui is
the direction of the z axis; therefore, its equation of motion is

simpler than the two preceeding ones. It has the form:

‘. (1.59)
II[-JT (cosd, -} cosd;+4-sind) 4 w, (— sind; 4 cosdy) —

—u,sin t\.-] = M).

It remains for us to draw up the equation of motion of the p
gyroscones Gx'Gz and Ga. The directions of ﬁi for them will be the
directions of the axes of the housings. Since disposition of the
gyroscopes with respect to the platform is taken the same as in an
angular rate meter with three degrees of freedom, then the equations
of systems 4, 5 and 6 will coincide with equations (1.37), if we set:

(1.60)

My My My 1 My MY M1 ), A= MY |

By combining equations (1.37), (1.56), (1.58) and (1.59) we
find 2 complete system of six first-order differential:equations
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which describe the motion of the gyrostabilized platform:

1.61
”.{Jﬁ{llnb,-{;«o,(cosb._-{; cosd; + sipd,) — l, ( )

= w4 (= 5108, 4 cos] cospcos y — !
A [7‘, (= 5Ind 46038 + w, sindy —
= 0x Cosdy + costy+ siny] cospsiny; 4,
+ [‘;r (€038 + cos &y 4 5in ) 4, (—sir 8+cosdy~ |
—w,sin o’ll""“ }I= M.
H {[7‘:- SInd 4oy (cos. 0584 sindy —
= (indy 4 cost)iny 4 [ £ (—sindy 4 costy)
0081080, 018y + condy + sinby]cosy} = .
W[ 3 €or by 4 costy 51ty 4 |
+ 0 (= sind, 4 cos by —a, sin o,]i= A

H (@, cosd, + , sind)) = Aft,
H (w,51n8, — ©, cos 8)= A1},
H (518 — 0, cos8,) == A,

|

Let us consider the right sides of equations (1,61),

The moments M;(, M; and M; «which act along the axes
of the gimbals of the platform, can be represented in the follow-
ing form:

M'-:,u',. M,

St W 2 (1.62)
IRES TR T

M= 4 ),




where Mix" M:y, and M:z are the moments created by the relief en-
gines Enx' En2 and En, and which are dependent on the angles 61, 62

and 6, of the rotation of the gyroscope housings relative to the
platform, and M;x" M:y' and M:z are the destabilizing moments. The
destabilizing moments are formed by the friction forces in the supports
of the platform suspension axes and by attractive forces (within
accurate balancing). The moments caused by errors of forming the un-
loading moments are also related to this.

The moments M;, M; and H;, which act along the axes of the
gyroscope housings, may be represented in the form:

(1.63)
M e A 4 ML
My e Ay, AL,
A = Ath, M8

Here M:* M:yand M:x are the controlling moments which orient the
platform in the given manner. Moments M:x' M:y and M:x occur be-
cause of friction in the supports of the axes of the gyroscope
housings, unbalancing of the housings relative to their axes
and because of errors of forming the controlling moments. The per-
turbing moments M:x' M:y and M:x are the main cause of errors in
orientation of the gyrostabilized platform,

We note that equations (1.61) are sufficient to describe the
motion of the system (within the limits of precession theory) only
on the assumption that the friction forces in the supports of the
axes are not dependent on the magnitudes of the normal reactions.
In the opposite case, it is of course necessary to retain all 18
equations of (1.51). Let us note those, where the left sides of
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-
equations (1l.61) are dependent only on &, but are not dependent

on a. Angle a is thus a cyclic coordinate.

Together with relations (1.62) and (1.63), equations (1.61)
describe the motion of both a free and controlled gyrostabilized

platform. In the case of a free gyrostabilized platform
(1.64)

My = My e= M, =0,
-

In the case of a controlled gyrostabilized platform, these
moments are distinct from zero.

Let us first consider the case of a free gyrostabilized platform,
In this case the last three equations of (l.61) yield:
(1.65)

Wy cusd) + ), sind; = 0, w0, sind; — w, cos 8y = 0,
©,5ind; — w,cos b, ==, }

Relations (1,65) are a homogencous system of linear equations
relative to Ger @ and W, Its determinant A, according to
expression (1,4l1l), is equal to:

(1.66)
A=—-tosb,cos(6,‘-.o‘),
When
(1.67)
< <G <

the determinant is distinct from zero and system (1.65) permits

only a zero solution:
(1.68)

Oy =0y e, =,

This obviously means that the platform retains its fixed orien-
tation in the inertial coordinate system,
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If in addition to equality (1.64), we assume that
(1.69)

My = M)y == M =0,

then, by taking into account %Liie solution of (1.68), from the first
three equations of (1.61), we find:
B (1.70)
H { (7‘; slnd,) cosfcosy — l :‘- (—sind, +cuso,)] X
xcos’slny-}-[-:—‘ (cosd, + coso,-{»slnb)]slnﬂ} =0,
H {(;;- slno,) siny4- [7141 (-slnb.-{-cosﬁ,)] cow} =0, ]
H % (cosd, 4 cosd, 4 sind) ~ 0.

sy s s 1 2 3
In the case where the destabilizing moments M2x" sz., sz act

along the x', y', z axes, values 61, 62, 63 will vary with time and -
can, in particular, take those values under which determinant (1.66)
will become equal to .zero. Then the existence condition for of
solution (1.68) is broken and the orientation of the platform will

no longer remain invariant. In order for this not to occur, that is,
in order that angles 61, 62, 63 will be small and that inequalities
(1.67) be trivially fulfilled, the engines Enl, En, and En, are
introduced into the circuit of the device. These engines create unloading
moments M:x" Mfy., and M:x , which counteract the affect of the
perturbing moments. The unloading moments can be formulated in the
following manner:

(1.71)

Ml == — kP cospeosy — k8 cospsiny,
Miy = — kA siny -k cosy,
Ml== — k8,

By taking into account inequalities (1.67), we note that the
unloading of moments, calculated by relations (1.71), provides the
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existence of a trivial solution of the first three equations of
(1.61), if of course there are no destabilizing moments. Having
taken coefficients k:' kz and k’ sufficiently large, i.e., such
that the values on the right sides of relations (l.71) exceed those
corresponding to the destabilized moments at small values of 61, 6z
and 63, we can provide trivial fulfillment of inequalities (1.67).

We can easily ascertain that the equilibrium position of
the circuit

(1.72)
h|::67 'st\.‘ =

is stable (within the limits of precession theory).

At small values of 61, 62 and 63, from relations (1.61), (1.68)
and (1.71) we find:

(1.73)

H @ cospeosy - b cospsiny48,sinp) =

= — kb cospsiny - kM cospcosy,
H (5, siny — 5. 08 ¥) = kb, cosy — AN;siny,
M8y =~ kA, ]

It follows from the last equation of (1.73) that at k3>0 the
value of 63 approaches zero in time. Therefore, the stability of
the equilibrium position of (1.72) is obviourly determined by
the properties of the solutions of the system o:1 the two first
equations of (1.73) at 63=0, which in this case assume the form:

(1.74)
(Itbs!\(ﬁ,cos}:—}i.slny}:

= —cosp (ko sin v Ak cosy),
II (.A,sln.y — 8, cos Y) == k\, cosy— kpysin Y-
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Having multiplied the first equation of (1.74) by cos Yy and
the second by cos B sin y and having added the results obtained,
we find

gm§u$r+kp9=sq 0 (L.7%)

Having multiplied the first equation of (1.74) by sin y and
the second by cos B cos Yy, and having added the results, we find:

(1.76)
cosp (1, + kb)) =0,

The stability at B #"/2,kl>0 and k >0 also follows from the
form of equations (1.75) and (1.76).

The comment with respect to disposition [see (1.46)] of the
gyroscopes on the platform, made during analysis of operation of the
absolute angular» rate meter, remains in force for the gyrostabilizer
circuit,

It should be noted that consideration of the stability of the
gyrostabilized platform within the limits of precession theory is
usually insufficient. Final solution of the problem of the sta-
bility of the equilibrium position of (1.68) and (1.72) requires
consideration of more complete equations than (1.61), in which the
equatorial moments of inertia of the gyroscopes, the moments of
inertia of the gyroscope housings and the gimbal |,
as well as the dynamic processes occurring in the formation circuits
of the unloading moments, should be taken into account., Complete
investigation of the stability of precession motion of gyroscopic
devices is a special problem which is not considered here. A
number of well-known investigations, 0 to which one should turn
if necessary, is devoted to the solution of this problem,
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Let us now consider the case of a controlled gyrostabilized
platform. In this case orientation of the platform does not re-
main fixed in inertial space, as in the case of a free gyrostabil-
ized platform, but varies by a given law, Moment sensors Dul, DI,
and DM’ mounted on axes X 0 yz and X, of the gyroscope housings
(Figure 1,10), are used to control rotasion of the platform, The

corresponding moments were denoted by M M: and M:x.
’

Yy

It follows from the three last equations of (1.,61), provided
that the conditions of (1.67) are fulfilled, that

(1.77)

sind,

M
- _7;’- teiems K, cos (A —8y) ~
L] M‘
% (_ .A_;;'_ cosd, +7','- llnh,) .
At M,
S iRy .l__ .)(—’;'_ sind, ¢ '7;""’6.\) .

i M, M, .
"= (k'.'-"r.)("l;‘ cosh, — -7"— slnh,) 2

Expressions (1,77) are obtained in similar fashion to formulas
(1.43), derived during analysis of operation of a three-component
absolute angular rate meter. If 61, 62 and 6’ are small, then,
similar to (1.45), we obtain from expressions (1.77)

M:v ‘.", Mf, (10 78)

"'l="‘"7l'-. = -”'.._ ‘,.'.__.7’_”

Thus, if moments M:x' M:y and M:x arc formed as the given time
functions and if the value of H is assumed to be constant, then,
according to the equalities of (1.78), the projections w_, w_ and

w, are also given time functions. The values of ":x’ M:

o

y and M:x
or any other values which uniquely determine these moments, may be
uscd as the information source of the projections of Wer © and
w, of the absolute angular rate of the platform onto the axis of
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the ~oordinate system xyz, bound to it.

Equalities (1.68) for an uncontrolled gyrostabilized plat=-
form and relations (1.78) for a controlled gyrostabilized platform
are valid if (l.69) is assumed., If this assumption is not ful-
filled, i.e., if perturbing moments M;x’ M:y and M;x act along the
ax¢s of the gyroscope housings, then in both cases instrument errors
wa, Awy and sz, determined by the following equalities, occur:
(1.78a)

M} M}
l\bl‘:n-——ﬁ. A‘l‘,ﬂj;i. Aw'“_‘_;ii_

The values of wa, Aw_ and sz are called "free deflections"
of the gyrostabilized platform. ‘

1.3.6. Free and controlled gyro frames . The gyroscopic platform may not
béfthé load-bearing element buc the friction in its suspension may

be insignificant. Fdf’éi&mble, the platform may be surrounded by

a spherical shell and suspended in a liquid with a low viscosity

factor.

In this case, the angle of rotation sensors of the gyroscope
housings with respect to the platform, the unloading engines and
circuits of formation of the unloading moments may be eliminated
from the circuit considered in section 1.3.5.

The corresponding gyroscopic devices are usually called gyro ' I
frames (in the given case this will be a three-dimensional three-

gyroscopic gimbal). Like gyrostabilized platforms, gyro frames
may be free or controlled, depending on whether the controlling
momants are applied along the axes of the gyroscope housings or
whe cher they are absent., In the first case the platform of the ]
gy:» frames rectains its own fixed orientation and in the second
cas» it rotates at an angular rate w, whose projections onto the
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x, vy and z axes of the gyroframe are bound to the controlling
moments of relations (1.78). The perturbing moments along the

axes of the gyroscope housings lead to deflections of the gyro-
frame according to the equalities of (1.78a).

1,3.7. Additional comments. In concluding consideration of

gyroscopic devices of inertial navigation systems, it is useful to
make several comments of a general nature.

We have considered several methods of constructing gyroscopic
devices, by means of which information can be obtained about the
orientation of some trihedron connected to the gyroscopes in an
inertial coordinate system. All these devices can be combined by
a single common name of absolute angular rate meters, This ex-
pansion of the concept "absolute angular rate meter" is useful be-
cause it permits consideration of almost all gyroscopic devices of
inertial navigation systems from a single viewpoint. However, it
should be noted immediately that there is a considerable difference
between a free gyroscope and free gyrostabilized platform, on the
one hand, and a controlled stabilized platform and essentially
angular rate meters. Free gyroscopes and gyrostabilized platforms
retain a given fixed orientation of the trihedron bound to them.
Thus, the orientation of this trihedron in an inertial coordinate
system is immediately known.

A strictly angular rate meter and a controlled platform permit
only measurement of the value of projections of the absolute angular
ratc of a mobile trihedron to its axis. The orientation of the
mobile trihedron in the inertial coordinate system can be determined
by these values. This additional problem requires solution of a
system of differential equations, which, as we shall see below, re-

duces to the well=-known Poisson equations.12
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One of the consequences of the noted difference is the circum-
stance that the inconstancy of the quantities of the natural kinetic
moments of the gyroscopes in the circuit of the controlled gyro=-
stabilized platform (or of the absolute angular rate meter) leads,
as was already noted, to orientation errors (or to errors in deter-
mining the projections of the absolute angular velocity), and in
the case of a free gyroscope and free gyrostabilized platform the
inconstancy of the kinetic moments of the gyroscopes do not induce
any of the indicated errors.

This is obvious from relations (1.65), (l1.68) and (1.75)=(1.78).
Relations (1,65) were obtained from the three last equations of
(1.61) under the condition.(l1.64) and are not dependent on the value
of H, The existence of solutions of (1.68) is also not dependent
on H, The stability of this solution is retained according to (1.75)
and (1.76) at any values of H distinct from zero., The value of H is
essential in relations (1.77) and (1.78). When calculating Wer W
and v, from the known values of M:x' M:y and M:x [according to
formulas (1.,77) and (1.78)), the difference of the real value of H
from the calculated value by the quantity AH leads to errors:

b 4

Ao, =0, %-;! o doy=—0, -%l o Aoy=m—u, A’;i ;

In the circuits of a three-component absolute angular rate meter,
free gyrostabilized platform and controlled platform considered
above, the gyroscopes are installed so that their axes of sensi-
tivity form an orthogonal set of three., The axis of sensitivity
of a gyroscope is here understood as the direction perpendicular to
the plane, containing the direction of the natural kinetic moment
and axis of the gyroscope housing, and determined by egualities
(1.46). The mutual orthogonality of the directions of the axes
of sensitivity of the gyroscopic moments is of course not compulsory.
The condition of orthogonality is usually observed in most real

designs of devices, because this condition leads to simpler relations




when calculating the values of the components of the absolute
angular velocity, controlling and unloading moments etc.. As is
well known, it is also suitable for a number of design and tech-
nological concepts. Construction of circuits in which the direc~-
tions of the axes of sensitivity are not orthogonal is essentially
possible, It is important only that the three directions of the
axes of sensitivity not be coplanar.

The following comments, which it is necessary to make, concern the
assumption-made during derivation of the equations of the pre-
cession motion of the gyroscopic devices considered. The fact is
that the angular momentum theorem [expression (l1l.5)]) is generally
valid only if the point, relative to which the angular momen=-
tum of the system and the external force moments are determined,
is fixed in the inertial coordinate system. 1In all cases when
equation (1,5) was used, the stipulation was made that the origin O
of the trihedron Oxyz is fixed in the coordinate system O;g*n*c*.
Actually, the platform of the gyroscopic device is mounted on a
moving object and, therefore, the origin of the coordinate system
Oxyz moves in inertial space. However, the derived equations remain
valid in this case as well. 1In order to prove this, let us con=
sider the coordinate system Of,n,t,, whose origin is combined with
the vertex of trihedron Oxyz, while the directions of the axes
coincide with the directions of the corresponding axes of the in-
ertial coordinate system 02€*n*c*. The coordinate system O£,N,Z,
moves in a forward direction with respect to the system Ozg*n*c*;
therefore, the left sides of the equations of angular momentum,
written in these coordinate systems, are coincident. The right sides
differ by the value of the force moments of inertia of transient
motion. Since the motion of the trihedron 0O{,n,r, is forward, the
inertial forces are parallel (there are no Coriolis forces) and they
are determined by the acceleration of the translational motion of
trihedron O/, N,%,, i.e., by the acceleration of its origin. If
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the gyroscopic elements of the circuits are balanced, the forces
of inertia of translational motion, like the attractive forces, do
not create additional moments, hence follows the validity of the
equations of motion derived for a fixed point 0, and also

for a moving point. When considering unbalanced systems, the mo-
ments of inertial forces should be taken into account along with
the moments of attractive forces. In particular, the inertial
forces will create perturbing moments if balancing is incomplete.
The given argument, strictly speaking, is exhaustive only if the
origin O of the moving trihedron coincides with the center of mass
(and simultaneously with the center of suspension) of the gyro-
scopes. If several gyroscopes are placed on the platform, this
condition is not fulfilled and moments of centrifugal and Coriolis
forces, which occur as the result of rotation of the coordinate
system Oxyz (of the platform) with respect to the system Of,n,%..
act on the gyroscopes. However, these moments are negligible in
view of the limitation of the values of Wer wy and w, and the small
dimensions of the platform, as a result of which these

additional moments are usually disregarded.

Finally, it is also useful to note the following. In con-
sidering gyroscopic devices of inertial navigational systems, we
assumed that the gyroscopes are mounted in an ordinary mechanical
gimbal suspension. In modern gyroscopic devices, other principles
of suspensions - floating, gas-dynamic, magnetohydrodynamic, mag-
netic, electrostatic etc. - are coming into use more and more.

However, the main relations which determinc the operation of
gyroscopic devices and those obtained above under the example of
a mechanical gimbal suspension, retain their validity for any other
type of suspension as well, Therefore (as in newtonometer circuits),
there is no need to go into the details of the operating principle
of this or that type of suspension. We will also not find this

necessary during further consideration.




1.4. The Fundamental Equation of Inertial Navigation. General
Principles of Constructing Inertial Systems.

l.4.1. Conversion of the fundamental equation of inertial navigation

an¢ inteqration of it with respect to fixed orientation axes. The

fundamental equation of inertial navigation is equation (1l.1) of
motion of the sensitive mass of a three-dimensional newtonometer
or relation (1.3), which relates the reading of the newtonometer
as a measuring device to the acceleration of motion dz?OZ/dt2 of
its sensitive mass and to the total attractive force of the unit
sensitive mass by the aggregate of celestial bodies:

(1.79)

3
n= S0 Firg).

The essence of the inertial navigation method consists, as
already noted, in integration of equation (1.79), which differs
from equation (1.1) only in its notations.

Equation (1.79) can be integrated, for example, in the follow-
ing manner. Let three one-component newtonometers be mounted on
a gyrostabilized platform, considered in the preceding section,
such that the directions of their axes of sensitivity form an
orthogonal trihedron whose axes are directed parallel to the axes
of the inertial coordinate system Ozé,n*c,. Let us assume that
the system of three one-component newtonometers is equivalent to
a single three-dimensional newtonometer. The readings of the newton-
omcters will then be projections of the vector n onto the directions of
their axes of sensitivity: nE*, nn' and nc*. Let us denote the
projections of vector r,, onto the axes of the inertial coordinate
system by £,, n, and ¢,. In inertial space these projections are
obviously Cartesian coordinates of point O of the location of the
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sensitive masses of the newtonometers.13 From relation (1,79),

we have
(1.80)

mo=Th = A 0.
Ry = ‘“,-—-F“(i n. &)

= 7,r —Fu G, ).

By integrating equality (1.80) twice, we find:
(1.81)
h=!ﬁm+ﬁﬁ“m;mmﬂ+$#h+um

‘ ¢
'1.-=f J‘ln..,'}- Fu (B 0y TNttt 22 an, ‘”’., § w0,

zrffu"4nJhm;nmm+“Wm:hun

Integration of equations (1.80) requires that the correspon-
ding computer and also the clocks, from which the absolute (world
or Newtonian) time signals enter the computer, are contained in
the apparatus of the inertial navigation system. It is ob-
£’ Fn* and Fc*should be known and
that the initial values of coordinates £,(0), n,(0) and z,(0) and
their time derivatives be d¢,(0)/dt, dn,(0)/dt and dz,(0)/dt should
also be known,

vious that the form of functions F

The Cartesian coordinates £,, n, and ¢, of the point at which
are located the sensitive masses of the newtonometers are obtained
as a result of double integration. The position of this point on
the object on which the inertial system is mounted is generally
arbitrary. In particular, it may not coincide with the center of
mass of the moving object. It is not essential to determine the
coordinates of the object, because the resulting error obviously
does not exceed the linear dimensions of the object. However,
determination of the velocity and acceleration of the object along
with the coordinates may also be contained in the task of the inertial
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system: The velocity and acceleration of the center of mass of
the object may differ considerably from those of the sensitive
mass of the newtonometer if the latter is not located in the
center of mass of the object. The resulting problems will be dis-
cussed in the following section of this section.

Relations (1.80) and (l.8l1) and the concepts expressed in
regard to them fully determine the essence of the operating prin-
ciple of inertial navigation systems. However, they do not yet
provide a practical method of realizing this type of system. In
fact, the inertial coordinate system O E.n.c*, to which are re-
lated all the arguments, have not yet been determined in practice.
The form of functions FC 0 Fn* and PC* is also still unknown. The
fundamental relations of inertial navigation in the coordinate
system specifically bound to those celestial bodies (or body)
in whose neighborhood and relative to which the navigation
problem should be solved, must first be obtained for practical
realization of the considered principle. A system whose origin is
combined with the center of mass of some celestial body may be
taken as this coordinate system. Henceforth, we shall consider
this celestial body to be the earth.

Let us introduce a right-hand orthogonal coordinate system

Olé,n*c*, the origin 01 of which coincides with the earth's

center of mass, Let the orientation of trihedron Ols*n*c* be un-
changed in the inertial coordinate system., Without loss of dgen-
erality, we can obviously assume that the directions of the co-

ordinate axes Ozﬁ*n*c* and Olc.n*c* coincide  and retain their

fixed position relative to the directions from the earth's

center of mass 01 to moving stars.
/

Let us denote radius vector of point O of the location of
the sensitive mass of the newtonometer relative to the earth's
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center of mass,ol by T and the radius vector of point 0, rel-
ative to the origin 02 of the inertial coordinate system by

T o4 (Figure 1.14). It is obvious that

fo=Fo 1. ot

Fig. 1.14

By substituting equality (1.82) into relation (1.79), we find: *

=+ G = Flre). (1.83)

Force f(;oz), which acts on the sensitive mass of the newton-
ometer, is the total attractive force of this mass by the earth and
by the remaining celestial bodies. According to the law of Newton's
gravitational force, the value of the attractive force by the earth
of the unit sensitive mass of the newtonometer is dependent only on
T. Let us denote this force by 5(;). Let us denote the attractive
force of the unit sensitive mass of the newtonometer by the remaining

celestial bodies by %l(;). Expression (1,83) may then be rewritten
in the form

(1.84)

d’rq

dr |
et b — &)= Fue).
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It is easy to see that

(1.85) i
2 —
Lo - R 0)=0. 1

In fact, ?l(O) is the attractive force of the unit mass placed
at point 0l by the celestial bodies, with the exception of the earth.

Therefore, equation (1.85) is nothing more than the equation of
motion of the earth's center of mass within the gravitational field
of the remaining celestial bodies.

14

Taking into account equation (1.85), equality (1.84) assumes
the form:

5 r g (1.86)
n= T — g(r) 4 P, (0 — P, (n).

If the motion of the object (and consequently, of point O)
occurs at a small distance from the earth's center, commensurate,
for example, to its radius, then the difference

TP R IR

(1.87)

AF,(r)=F,(0) — Fy(r)

of the attractive forces at points O and 01 become negligible

-+ -+
compared to the force g(r) even for nearby celestial bodies, in-
cluding that for the moon and sun.

Thus, deflection of the vertical, induced by the difference
of the sun’s attractive forces at the center of the earth and at
some point on its surface, does not exceed a value of 0,008",
Accordingly, this deviation does not exceed a value of 0.017" for the
moon. At the same time, deflection of the vertical, induced by the non-
uniformity of the earth's distribution of mass, has, as was noted
in 5 2,1 an order of several angular seconds. Therefore, we may
assume with a sufficient degree of accuracy that

(1.88)

?,
n=-—:—,f——l(r).
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The coordinate system Olﬁ.n,c, moves in a forward direction
relative to the inertial coordinate system OIE,n*;*; therefore,
we can obviously assume that differentiation in equation (1.88) is
carried out in the coordinate system Oli,n,c,.

This equation (1.88) is valid in the coordinate system OIE,n,C,
and has the same form as equation (1.79), obtained for the inertial
coordinate system, Consequently, with respect to Newton's laws, the
coordinate system Olg,n,c, near its origin is practically indis-
tinguishable from the inertial system. At the origin itself they
are completely indistinguishable. The principle of the equivalence
of the general theory of relativity, which,as is well known, is of

ER The coor-

a local nature, is essentially included in this.
dinate system OIE,n,c* is distinguished near its origin from the
inertial system only to the extent to which the gravitational field
in which the earth moves is inhomogeneous. The difference (1.87)

also characterizes this inhomogeneity.

From equation (1.88), similar to equations (1.81), we find:
(1.89)
L=JJ@-H”am+¢mt+um

m=JJU-Hdam+“ﬁh4mm

L= U(u o )atdt+ 5 4 p )

If we assume that the earth's gravitational field is central (or
rather spherical), we have
(1.90)

g(n=-"5,

where 1 is the product of the earth's mass by the gravitational
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constant. The equations (1.89) assume the form:
(1.91)

-]

0=

(o — ) arar + B2 1 42,0,

[}
[}
J (mn— 2)arar 4 2521 40,00
. '
b=

Sy .

(nea = o) arar + £t 0.

If the sphericity of the earth's gravitational field is taken
into account, then the projections of ge ' g and gr in equations
(1.89) may also be assumed unknown functlons of coordlnates Egr Ny
and ¢, and time functions. 1In fact, if the earth's body axis sys-
tem 0 £ n ¢, (rotating together with it), is introduced, then the
progectlonq of gg, g and gc of vector g to the axes of this system
will be known functlons of coordinates §, n and § of point 0. The
time motion of the coordinate systems Olﬁ.n.c* and olgnc rel-
ative to each other is known, It is defined by the law of the
earth's rotation with respect to its center. Therefore, the pro-
jections of 9gr = and g, may be calculated as functions of coor-
dinates £,, n, and f, and as time functions.

The problem of determining the coordinates of the object
during its motion near the earth's surface is essentially solved
by equations (1.89) or (1.91)., In fact, 'since the earth's motion
in the coordinate system plg*n*c* is known, we can transform from
Cartesian coordinates £,, n, and r, by appropriate calculation to
any other coordinates, including the earth's body axis system. The
orientation parameters of the object in any coordinate system may
also be found by using the required calculations. In order to
ascertain this, it is sufficient to recall that the angles of ro-
tation of the gimbal rings of the gyrostabilized plat-
form, which can be measured, determine the orientation of the ob-
ject with respect to the coordinate system Olg,n,c,, because
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in the considered case the orientation of the gyrostabilized platform
relative to the coordinate system ols*n*c* is fixed. By knowing
the orientation of the object in the coordinate system 0;5*"*C*' we
can convert to the parameters which characterize its orientation

in any other coordinate system, whose motion.relative to the sys-

tem olﬁ*n*c* is defined, of course including that in thé earth's

body axis system. A similar case holds for the rates of variation

of the orientation parameters.

Let us consider in more detail the problem as to what extent.
disregarding the inhomogeneity of the gravitational field, i.e.,
the difference of the attractive forces determined by equality
(1.87), is essential. In other words, is this disregard essen-
tially required or can we get along without it.

We can show that the latter case is valid, i.e., that diff-
erence (1.87) may be taken into account, and that the exact equality
(1.86) rather than the simplified relation (1.88) may be taken as
the equation of inertial navigation.

Let there be k celestial bodies whose gravitational difference
at point 0l and at point O of the position of the sensitive mass
of the newtonometer should be taken into account. Let us denote
the radius vector of the center of mass of the i-th of the ce-
lestial hodies relative to point Oxby ;i' The radius vector ;i of
the point O relative to the center of mass of the i-th body is
then equal to:

(1.92)

r=r—r,

Let us assume that the masses of the celestial bodies taken
into account and their motion in the coordinate system dli*n.c*
are known, so that

ry=rl).
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If we assume that the gravitational field of each of the
celestial bodies is spherical, then on the basis of Newton's law
of universal gravitation, we can write:
(1.93)

[ ]
nm—nmngmﬁ_J:%y

i= lr—ai

The right sides of the projections of the vector equality
(1.93) onto the axes of the coordinate systeﬁ Olc.n.c. depend
only on E.i(t), "*i(t) and c.i(t) and on £,, n, and §,. Introduc-
tion of them into the integrands (1.89) or (1.91), although it
complicates these expressions, . essentially does not change the
methods of solving equations (1.89), (1.91) and, consequently,
equation (1.86),

Essentially, nothing changes if we reject the assumption of
the sphericity of the gravitational fields of the celestial bodies
taken into account. In this case it would be nec~<sary *o intro-
duce k additional coordinates systems, rigid'y linking them to
the considered celestial bodies, We may aszirme that the gravita-
tional fields in the body axis systems arc defi.ed, while the mo-
tions (rotations) of the latter relative to the coordinate
system Oli.n.c. are known in time. Projections of tlie difference
(1.87) to axes £,, n, and r, will then be dependent on the time
and parameters which characterize the disposition of the considered
celestial body axis systems with respect to trihedron O}&.n.c. at
the initial instant of time. Taking into account the non-sphericity
of the gravitational fields of each of the % bodies is therefore quite
similar to taking into account non-sphericity of the earth's gravi-
tational field,

It follows from the foreqgoing that a knowledge of the required
parameters of the gravitational fields in the coordinate function
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is a necessary condition for realization of the principle of
inertial navigation. It is true that we shall subsequently see
that the schemes which operate under specific conditions and with
incomplete information about the gravitational field can be con-
structed for solution of some special problems of navigation.

l1.4.2. Determining the velocity and acceleration of the center

of mass of an object. The radius vector of point 0 of the position

of 1ts sensitive mass in the coordinate system 0 E,n,c, i’ denoted
by T in equation (1.88), which determines the readlngs of a three-
dimensional newtonometer,

If we assume that point 0O always coincides with the center
of mass of the object, then equation (1.88) will determine the
acceleration of the object, and as the result of integration of
this equation, the velocity and coordinates of the location of
the center of mass of the object will be obtained.

Actually, the position of the sensitive mass of the newton-
ometer does not coincide with the center of mass of the object.
This is explained by the followin-~ factors. First, even if the
center of mass of the object occupies a fixed position in its body
and if the center of suspension of the sensitive mass of the new-
tonometer (the position in which the suspension is not deformed)
coincides with the center of mass of the object, the sensitive
mass completes some motion relative to the center of the sus-
pension as the result of deformation. The velocities and accel=-
erations of this motion may be significant.

Second, the center of mass of an object usually does not
occupy a fixed position within the body of the object, 1Its posi-
tion varies because of motion of the mass on the object, combus-
tion of fuel etc.. Therefore, even if the canter of suspension of
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the sensitive mass of the newtonometer and the center of mass of
‘the object initially coincided, they would subsequently diverge.

Furthermore, a newtonometer can be established at some dis-~
tance from the center of mass at the very beginning. Finally,
additional variation of their mutual disposition is possible be-~
cause of deformations (or elastic oscillations) of the object.

Because of the non-coincidence of the center of mass of the
object and of the sensitive mass of the newtonometer, the accel-
eration, velocity and coordinates of the center of mass of the
object, strictly speakinyg, may not be obtained directly from
equation (1,88)., Moreover, equation (1.88) is the equation of a
three~dimensional (three-component) newtonometer, whereas three
one~-component newtonometers with three sensitive masses are ac-
tually used.

Let us consider the posed problems in more detail. This is
even more necessary Since exposition of the operating principle
of the newtonometer and interpretation of the objective content
of its readings are not always accurate and rigorous in the litera-
ture on inertial navigation.

Let us link trihedron O'xyz to the housing of a three-dimen-
sional newtonometer. Its origin will coincide with the center
of suspension of the sensitive mass, i.e., with the position which
it occupies when the suspension is not deformed and the readings
of the newtonometer are equal to zero. For the diagram presented
in Figure 1.1, the x, y and z axes may be directed along the axes
of fhe springs.
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The position of point 0' relative to the earth's center
0l is determined by the radius vector ;', and the position of
point O relative to O' is determined by radius vector p. Vector p
characterizes the motion of the sensitive mass relative to the
housing of the device and, consequently, the deformation of the
suspension. Obviously,

(1.94)
r=r'4p. ,

Let us find the equation for B. It follows from that out-
lined in § 1.2 and section 1.4,1 that the equation of motion of
the sensitive mass of the newtonometer in the coordinate system
OlE.n,;, may be represented in the form
(1.95)

Lild
mar =ng(r)+f,

where f is the total force acting on the sensitive mass on the

side of the suspension., By substituting the value of T from (1.94)
and noting that the inhomogeneity of the gravitational field in the
mass of the device may be disregarded, we find

(1.96) |
If the force f is only the result of elastic déformation of the \
suspension, then ¥=kp and equation (1.96) is represented in the

following form:
(1,97)

'’ ’ ] [
%’7‘}+v’o=—[—',,—,'.-—l(r)]. Ve~
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Differentiation is carried out in the coordinate system olE,n*c*.
By integrating in this same coordinate system, we find the expression

for b:
(1.98)

T ,
p= __.'; [9 [,%’.,:--— g(r')]‘slm’l(l —dr+

4-pcos vt +«%'- -':-:';-sln v,

wherce B° and dB°/dt are the corresponding initial values.

In order to maintain the analogy with relation (1.88), let us
take as the readings of the three-dimensional newtonometer the

vector

(1.99)
.s—V’[\.

It follows from relations (1.98) and (1.99) that the instan=-
taneous values of the velocity and acceleration of the point of
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